Brownian Processes for Monte Carlo Integration on Compact Lie Groups
نویسندگان
چکیده
This paper proposes a Monte Carlo approach for the evaluation of integrals of smooth functions defined on compact Lie groups. The approach is based on the ergodic property of Brownian processes in compact Lie groups. The paper provides an elementary proof of this property and obtains the following results. It gives the rate of almost sure convergence of time averages along with a “large deviations” type upper bound and a central limit theorem. It derives probability of error bounds for uniform approximation of the paths of Brownian processes using two numerical schemes. Finally, it describes generalisation to compact Riemannian manifolds.
منابع مشابه
Integration formulas for Brownian motion on classical compact Lie groups
Combinatorial formulas for the moments of the Brownian motion on classical compact Lie groups are obtained. These expressions are deformations of formulas of B. Collins and P. Śniady for moments of the Haar measure and yield a proof of the First Fundamental Theorem of Invariant and of classical Schur-Weyl dualities based on stochastic calculus.
متن کاملCrossing Probabilities for Diffusion Processes with Piecewise Continuous Boundaries
We propose an approach to compute the boundary crossing probabilities for a class of diffusion processes which can be expressed as piecewise monotone (not necessarily one-to-one) functionals of a standard Brownian motion. This class includes many interesting processes in real applications, e.g., Ornstein-Uhlenbeck, growth processes and geometric Brownian motion with time dependent drift. This m...
متن کاملMartingale Characterizations of Stochastic Processes on Compact Groups
By a classical result of P. L evy, the Brownian motion (B t) t0 on R may be characterized as a continuous process on R such that (B t) t0 and (B 2 t ? t) t0 are martingales. Generalizations of this result are usually obtained in the setting of the so-called martingale problem. This paper contains a variant of the martingale problem for stochastic processes on locally compact groups with indepen...
متن کاملMonte Carlo algorithms for Brownian phylogenetic models
MOTIVATION Brownian models have been introduced in phylogenetics for describing variation in substitution rates through time, with applications to molecular dating or to the comparative analysis of variation in substitution patterns among lineages. Thus far, however, the Monte Carlo implementations of these models have relied on crude approximations, in which the Brownian process is sampled onl...
متن کاملThe Brownian Bridge Does Not Offer a Consistent Advantage in Quasi-Monte Carlo Integration
The Brownian bridge has been suggested as an effective method for reducing the quasi-Monte Carlo error for problems in finance. We give an example of a digital option where the Brownian bridge performs worse than the standard discretization. Hence, the Brownian bridge does not offer a consistent advantage in quasi-Monte Carlo integration. We consider integrals of functions of d variables with G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012